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Prerequisite Skills:
1. Vector Analysis: addition, inner products, outer products, some differential operators
2. Integral Calculus: antiderivatives of simple polynomials
3. Drawing graphs of functions
4. Some familiarity with basic physics concepts: forces, the electrostatic force given by

Coulomb's Law, work and energy

Physical Concepts Examined:
1. The physical definition of the work done by a force
2. The distinction between conservative and non-conservative forces and fields.
3. Association of potential energy with conservative forces
4. Definition of the electrostatic potential as a potential energy per unit charge
5. Methods of calculating the electrostatic potential

The object of this exercise is to lead the student to a connection between some rather abstract
constructs in physics and mathematics, that is, work and the electrostatic potential, and the
geometry of three-dimensional Euclidean space. An understanding by the student of the
underlying geometry of the concepts is a major goal in teaching the material, which appears in
introductory calculus-based physics courses in mechanics and electromagnetism. The traditional
teaching tools of textbooks, lectures including notes and drawings on a blackboard, and overhead
projections of drawings, provide hints of the three-dimensional geometry, but require that the
student have or develop the ability to visualize that geometry.

In response to the "visualization difficulty", we developed the idea of a new tool consisting of
convincingly three-dimensional animated cartoons depicting the geometrical content of the
material, thereby providing the student with the visualization itself. A first step in this direction is
the storyboard presentation incorporated in this project. The storyboard is provided as
background material to help the student solve the problems in the activities given at the beginning
of the project. It is also a valuable learning tool for all students.

Each page of the storyboard is divided into a left and right vertical column. In the left column are
still cartoon panels consisting primarily of drawings illustrating the concepts. The right column
consists of narrative text and equations that develop the concepts. The storyboard is to be read
almost like a newspaper comic strip, with the narrative in the right column forming an extended
caption for the cartoon panels.



In this ILAP, we address a set of activities that are "everyday" physics exercises for a student in
the introductory courses. That is, they are basic exercises that can be solved in a few minutes or
hours. They might, indeed, appear in sets of homework problems assigned in the course.

We emphasize basic activities because they most clearly ask the student to display his or her
answers to the two most important questions in the technical practice of a prospective
professional scientist or engineer:

1. Do I understand what the theoretical equations mean, when used as mathematical models of
the behavior of physical reality?

2. Have I learned to use the theoretical equations to address and solve physical problems?

When the answer to both of these questions is a resounding "Yes!", then the student is prepared
to become a professional. The difficult and complex problems that will inevitably arise in a
professional career can be addressed with confidence.

On the other hand, the exercises are chosen and posed to emphasize the use and properties of
path integrals, a type of mathematical object that plays an important role in our understanding of
physics and engineering beyond the introductory level. Most of the exercises address
conservative forces, such as the gravitational force and the electrostatic force, for which path
integrals are particularly simple. The term "conservative force" is a handy piece of technical
jargon, most simply defined as a force whose curl is zero, that is, one that has no rotational
component. Most (all?) fundamental physical forces have this property. It is more carefully
defined in the storyboard, on page 15.

Given the prerequisite skills in vector analysis and calculus, the student can find in the storyboard
all the concepts needed to successfully address the activities. The student should carefully read
the storyboard at the beginning of the project, then refer to it for help with any difficulties found in
addressing the activities.

The activities represent foundations for more advanced study in mechanics, orbital mechanics,
electrical engineering, physics, and chemistry. For example, Activity 7 might be looked upon by a
chemistry student as a crude model of a polar molecule, for which the calculated potential and
electric field mediate chemical interaction with other molecules. An enthusiastic student might
undertake the exercise of elaborating the dipole by separating the positive charge into two equal
particles, displaced from the vertical axis by equal angles, thereby generating a (still crude and
thoroughly classical) model of a water molecule, and repeating the calculations for the new
configuration. Many of the properties and symmetries of the results for the dipole survive such an
elaboration.
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Activities

1. The Local Gravitational Force

The local gravitational force near the surface of the earth is given by ( )kF ˆ−= mgg , where m is

the mass of a particle on which the force acts, 2s
m809g .=  is the local gravitational acceleration,

and k̂  is the vertical unit vector. Explicitly show that this force is conservative (see page 15 for
the definition of a conservative force) by performing each of the following three calculations.

(a) Show that the work done by this force on a particle of mass m in going from the point

( )AAA zyx ,,=A  to the point ( )BBB zyx ,,=B  is independent of the path chosen between

the points. [Hint: Because gF  is constant over the path and the dot product operation is

distributive over a sum, the form for the work reduces to ∫•=
B

A

g dsF: . Consider the

meaning of the remaining path integral. This easily generalizes to a proof that any constant
force is conservative.]

(b) Show that the work done by this force on a particle of mass m is zero for one trip around the

vertical circle described by 222 Rzx =+ , where R is the constant radius of the circle.

(c) Show that 0g =×∇ F . [Hint: What are the partial derivatives of a constant?]

2. The Universal Gravitational Force

The universal gravitational force is given by ( )rF ˆ−=
2

21
G r

mm
G , where

kgs
m11
2

3
106736G

⋅
−×= .  is the universal gravitational constant, m1 and m2 are the masses of

the attracting bodies, r is the distance between the centers of mass of the bodies, and r̂  is the
radial unit vector from the center of one of the bodies. (Note that it doesn't matter which mass you
call m1 or m2. For either choice, the force on the chosen body involves the unit vector away from
the other body.) Explicitly show that this force is conservative by performing each of the following
calculations.

(a) Show that the work done by the gravitational force on a satellite of mass m in a circular orbit

around the earth, mass mmE >> , is zero.

(b) Show that 0G =×∇ F . (In spherical coordinates, the curl of a vector v is given by
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3. The Electrostatic Field of a Single Point Charge

The form for the electrostatic field of a point charge q is given by Coulomb's Law,

rE ˆ
2

0r4
q

πε
= , where 0ε  is the permittivity of free space, 2

2

mN
C12

0 108548
⋅

−×=ε . , and r̂  is

the radial unit vector from the point charge. Explicitly show that this is a conservative field by the
following calculations.

(a) Show that 0d =•∫ sE  over any closed path in three-dimensional space. Use

èörs ˆˆsinˆ θ+φθ+= rddrdrd .

(b) Show that 0=×∇ E .

4. The Contact Frictional Force

The force of friction between a sliding object of mass m and a horizontal surface on which the

object slides is modeled by ( )vf ˆ−µ= mgkk , where g is the local gravitational constant, kµ  is

the coefficient of kinetic friction, and ( )v̂−  is a unit vector opposite to the velocity vector v .
Calculate the work done by this force around the closed path shown in the drawing and show that
this frictional force is non-conservative. On the straight-line part of the closed path, use

is ˆdxd = , and on the semicircular return path, use ès ˆθ= Rdd . Then independently calculate

0k ≠×∇ f . [Hint: Note that the only part of kf  that depends on the spatial coordinates is its unit
vector.]

R

�i

�j

r̂è̂
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5. The Potential of a Spherically Symmetric Pair of Conductors

Consider a charge distribution consisting of a conducting sphere of radius a carrying a charge q,
and a concentric conducting shell, inner radius 2a and outer radius 3a, carrying a charge of -3q.

a

2a
3a

q

-3q

Take the reference point of the electrostatic potential such that ( ) 0rV =∞= , where r is the
radial distance variable from the center of the charge distribution. The electric field due to this

charge distribution is ( )
( )














≥
πε
−

<<

≤≤
πε

<

=

.
ˆ

.

.
ˆ

.

a3r  , 
r2

q
a3ra2  ,  0               

a2ra  ,  
r4

q
   

ar  , 0     

r

2
0

2
0

r

r

E

(a) Find the potential ( )rV  for all values of r in the range [ )∞,0 . Specify the values

( ) ( ) ( ) aV a2V a3V ,,, and ( )0V .

(b) Use your results to plot the variation of both ( )rE  and ( )rV  on the same graph, showing
specific values at the conductor surfaces.

6. The Potential inside a Coaxial Cable

Consider a long, straight coaxial cable. The cable consists of a central conducting rod of radius a,
with a linear charge density λ , and an outer conducting cylindrical shell, with inner radius b and
outer radius c, with a linear charge density λ− .
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r = 0
r = a

r = b
r = c

Side View Cross Section

E

All of the electric charge lies on the surfaces of the conductors, and the electric field within the

cable is given by ( )






><

≤≤
πε
λ

=
br  , ar  , 0             

bra  , 
r2r

0

r
E

ˆ
. Take the reference point for the potential

to be the outer surface of the cable, where ( ) 0cV = .

(a) Find the potential ( )rV  for all values of r in the range [ ]c0, . Specify the values

( ) ( ) aV bV ,, and ( )0V .

(b) Use your results to plot the variation of both ( )rE  and ( )rV  on the same graph, showing
specific values at the conductor surfaces.

7. The Potential and Electric Field of a Dipole

Consider a dipole consisting of equal and opposite charges q and -q, separated by a distance
2a. The electric field due to this charge configuration has cylindrical symmetry about the line
connecting the charges. Therefore we choose an origin at the midpoint of the line connecting the
charges, and designate the location of our observation point (marked as O.P. in the figure below)
by the coordinates r and θ , as shown in the figure.
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O.P.(r,θ)

a

a

+q

-q

r

θ

θ= sinru

θ= cosrz

�r

è̂

(a) Use the form of the potential determined by superposition of multiple point charges,

V
q
r

n

nn

N

=
=

∑Κ
1

, where Κ  is Coulomb's constant ( ) 1
04 −πε=Κ  and N is the number of point

charges in the charge distribution. Show that, at the observation point,

( ) ( ) ( )[ ]21222122 ar2arar2arqrV
//

coscos,
−−

θ++−θ−+Κ=θ .

(b) By explicitly taking the limit ( )[ ]θ
∞→

,lim rV
r

, show that ( ) 0rV =∞= , in agreement with the

derivation of the form V
q
r

n

nn

N

=
=

∑Κ
1

.

(c) Show that the midplane at ( )2   0z π=θ=  is a plane of odd mirror symmetry (antisymmetry)

for the potential, that is, that ( ) ( )θ−=θ−π ,, rVrV .

(d) Show that the electric field for the dipole is given by

( )
( )
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qr , by

using the gradient operator in spherical coordinates,

( ) ( ) 





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∂
θ

+
θ∂

∂+
∂
∂−=θ−∇=θ öèrE ˆ
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V
r

1V
r
1

r
V
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(e) Show that the electric field has the same odd mirror symmetry about the midplane as does
the potential. That is, as ( )θπ→θ−→ -  zz , Ez (or Eθ) remains unchanged, while Eu (or

Er) changes sign.  Note that ( ) 0rV 2 =π, , so the potential everywhere in the midplane is zero,

while ( )2r π,E  is never zero. How do you interpret this observation? Locate and determine the

maximum value that ( )2r π,E  has in the midplane.
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(f) Explicitly show by integration of ( )θ,rE  along a path at any constant value of θ  from ∞=r

to an arbitrary finite value of r that ( ) ∫
∞

•−=θ
r

drV sE,  yields the same form as was found in

part (a).

(g) Finally, obtain approximate forms of the potential and the electric field for distances large
compared to the separation of the charges, that is, for ar >> , by expanding the radicals with
the help of the binomial approximation and discarding all but the leading terms. (By the

binomial approximation, for 1<<δ , ( ) δ+≈δ+ n11 n
.) We add a tilde to represent the

approximate quantities at large distance. Show that 
2r

qa2
V

θΚ= cos~
, and

( )èrE ˆsinˆcos~ θ+θΚ= 3
r

qa2
3

. Note and comment on the fact that these approximate

expressions have lost an important property of the exact expressions, specifically that

V~~ −∇≠E .
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The definitions of Work and the Electrostatic
Potential: Path Integrals

Cartoon Boards

F

Path S

sF dd •≡:

x

y

z

F

A

B

Path S

The definitions of Work and the Electrostatic
Potential: Path Integrals

Narrative

Consider the action of a force F  on some

particle moving along an element of a path

sd .  Because the directions of the force

and the path element may differ, we use the

projection of the force in the direction of the

path element.  The element of work done by

the force, :d , is defined as the dot product

of the two vectors:

sF dd •≡: .

Note that work has units of energy.

{ } { } Joules
s

mkg
2

2

lengthF ==⋅= ⋅
: .

Now suppose that a particle is moved from

some initial location, which we will call point

A, to a final location, point B, along a path

S, while under the influence of some force

F.  To find the total work done by the force

during this process, we must sum all the

elements of work, giving us the integral:

∫ •=
B

A

dsF: .

ds
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∫ •=
B

A

dsF: Path S

A

B

F

x

y

z

( )
( )

( )

∫ ++=
BBB

AAA

zyx

zyx

zyx dzFdyFdxF
,,

,,

:

rB

rA

Path S

A

B

F(x,y,z)

x

y

z

So determination of the total work requires a

calculation of the value of this integral.  Let's

begin by expressing the vectors in Cartesian

components, and expanding the scalar

product:

.

,ˆˆˆ

,ˆˆˆ

dzFdyFdxFd

dzdydxd

FFF

zyx

zyx

++=•
++=

++=

sF
kjis

kjiF

Note that the initial and final locations are

vectors:

,ˆˆˆ

,ˆˆˆ

kjir

kjir

BBBB

AAAA

zyx

zyx

++=

++=

where we have chosen an (arbitrarily

placed) origin and Cartesian coordinates.

We can write the work done by the force as

( ) ( ) ( )[ ]
( )

( )
.,,,,,,

,,

,,
∫ ++=

BBB

AAA

zyx

zyx
zyx dzzyxFdyzyxFdxzyxF:

Here we have explicitly shown that each of the

force components might in general be a

function of all three coordinates.  (The force

could also depend on time, but this would

make no difference in our calculation of work,

which is defined only in terms of spatial

coordinates.  Any time dependence of the

force would simply appear as a time

dependence of the work.)
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( )
( )

( )

∫ ++=
BBB

AAA

zyx

zyx

zyx dzFdyFdxF
,,

,,

:

rB

rA

Path S

A

B

F(x,y,z)

x

y

z

A

B

S1

S2

F(x,y,z)

x

y

z

[As the narration and text proceed, a blue or

green dot moves along the appropriate path

in the cartoon, and the corresponding

integral appears overlaying the cartoon.]

This looks like quite a mess to calculate,

because each force component can depend

on all three coordinates, and the equation of

the path may be a complex function of the

coordinates. Let's try to make it simpler. We

will find that the physical forces of gravity

and electrostatics "make work simple"!

Note that the calculation is much less

complex if one can choose a simple path on

which to do the calculation.

 For example, the path S1 in blue consists of

3 straight line segments: first a line on which

the y- and z- coordinates are held constant

at their values for point A while x varies from

xA to xB, then x and z are held constant

while y varies from yA to yB, and finally x

and z are held constant at their values for

point B while z varies from zA to zB.  The

path S2 in green is another such possible

simple path.  For the work along S1:

( ) ( )

( ) .,,

,,,,

∫

∫∫

+

+=

B

A

B

A

B

A

z

z

BBz

y

y

ABy

X

x

AAx1

dzzyxF        

dyzyxFdxzyxF:
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A

B

S1

S2

F(x,y,z)

x

y

z

The calculation has been reduced to a sum

of 3 ordinary one-dimensional integrals,

because our choice of simple line segment

paths aligned with the coordinate axes

reduced the other coordinate variables in

each integral to constant values.

We could do the same thing for path S2:

( ) ( )

( ) .,,

,,,,

∫

∫∫

+

+=

B

A

B

A

B

A

z

z

AAz

y

y

BAy

X

x

BBx2

dzzyxF        

dyzyxFdxzyxF:

In general, motion along the two different

paths would yield different values of the

work: 12 :: ≠ . This is because, in general,

( ) ( )BBxAAx zyxFzyxF ,,,, ≠ , and also for

the other integrands.

Simplifying the path made the calculation

much easier, by forcing variables other than

the integration variable in each of the three

integrals to specific constant values.

Putting a twist on this, let's introduce a

constraint on the force, instead of one on the

path. Seeking simplicity, we want to avoid

variables that make the calculation complex.

Let's explore what happens if we simply

"outlaw" those variables.
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A

B

S1

S2

F(x,y,z)

x

y

z

[As before, dots travel along the paths as

the text and narration describe the

integration.]

Let the force be such that each component

depends only on the corresponding

coordinate, so that

( ) ( ) ( )zFF  , yFF  , xFF zzyyxx === . [1]

Now if we calculate the work between points

A and B, using the same two paths, we find:

( ) ( ) ( )

( ) ( ) ( )

.

.

,

21

z

z
z

y

y
y

X

x
x2

z

z
z

y

y
y

X

x
x1

Thus

and

 dzzFdyyFdxxF

 dzzFdyyFdxxF

B

A

B

A

B

A

B

A

B

A

B

A

::

:

:

=

++=

++=

∫∫∫

∫∫∫

For our constrained force, the form for the

work immediately reduces to the sum of

three independent one-dimensional

integrals.  Furthermore, the calculated work

is the same for both paths, and depends

only on the location of the starting and

ending points. The calculation simply

doesn't depend on the path, and we get the

same value of work for any path whatsoever

from point A to point B.

A force obeying this restriction ([1]) has the

remarkable property that the work done by

the force between any two points depends

only on the location of the two points, and

not on the path taken between them.
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rB

rA

Path S

A

B

F(x,y,z)

x

y

z

( ) ( ) ( )[ ]
( )

( )

∫ ++=
BBB

AAA

zyx

zyx
zyx dzyFdyyFdxxF

,,

,,

:

x

y

z

F

A,
B

Sc

0dWc =•= ∫ sF

[The blue dot moves entirely around the

closed path during the narration.]

We need to keep in mind that we have

restricted the form that the force can take to

a very special case. Still, let's explore further

the consequences of a force that leads to a

value for the work that is independent of the

path taken from an initial location to a final

location.

There is an important corollary to our finding

the value of the path integral to be

independent of the path.  If the value of the

work done is independent of the path, then

the work depends only on the difference

between the coordinates of the initial and

final points. If we make the initial and final

points identical, then the work done is

necessarily zero. If the work is calculated

over any closed path, that is, one for which

the initial and final points are the same, then

the work done is identically zero.  Using a

subscript c to represent the work around a

closed path, we have that:

0dc =•= ∫ sF: .

We can also show the converse that, if the

work done around a closed path is zero,

then the work done between any two points

on the path depends only on the locations of

the points.
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x

y

z

F

A,
B

Sc

0dc =•= ∫ sF:

0dc =•= ∫ sF:

x

y

z

F

A

Sc

B

Consider an arbitrary intermediate point B

on a closed path.  The work done in going

from A to B along any arbitrary path is some

value AB: . Returning to point A by another

arbitrary path completes a closed path for

which 0c =: . Thus BAAB :: −=  for

whatever intermediate paths are taken, so

AB:  is independent of the path

The condition imposed on the force to get

the simplification, that each component of

the force be independent of the other

coordinates in three-dimensional space, is

more stringent than necessary to get this

very pretty result.  The necessary and

sufficient condition on the force so that the

work done be independent of path is that the

force have no rotational part.  The closed

path expression 0dc =•= ∫ sF: hints in

this direction.

Mathematically, the force has no rotational

part if:

.0
y
F

x

F

x
F

z
F

z

F

y
F xyzxyz =

∂
∂

−
∂
∂

=
∂
∂

−
∂

∂
=

∂
∂

−
∂
∂
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( ) 0dd

surface
bounded

c =•×∇=•= ∫∫ AnFsF ˆ:

ds

n̂ dA

x

y

z

F(x,y,z)

The same circular path (in blue)
bounds both the plane circular
surface (in green stripes) and
the bowl-shaped surface (in
yellow).

ds

n̂ dA

F(x,y,z)

x

y

z

Or more compactly: 0=×∇ F .  This is

read as "The curl  of F is zero."

(
zyx ∂
∂

∂
∂

∂
∂ ++≡∇ kji ˆˆˆ . For a review of the

vector calculus, see a calculus textbook, for

example Finney and Thomas {1}, Chapter

12 and page 985 and following. An excellent

discussion from the physicist's point of view

is found in Griffiths {2}, Chapter 1.)

The relationship between the closed path

integral expression for work and the curl of

the force is a specific case of Stokes'

Theorem: ( )∫∫ •×∇=•

surface
bounded

dd AnFsF ˆ .

Note that for any single closed loop, there

are an infinite number of open surfaces that

are bounded by the loop. (Two are shown.)

If  0d =•∫ sF  for every  closed loop then

0=×∇ F  is required to make the surface

integral always zero.

To give a name to the class of forces for

which work is independent of path, forces

that have this property are called

conservative forces.



Cartoon Boards Narrative

17

gF mg =

A mass anywhere in the near vicinity
of the earth's surface is subject to a
downward gravitational force.

( )rF ˆ−=
2

21
G r

mm
G

m1 F21

m2

F12

F21 is the
gravitational force of
mass 2 acting on
mass 1, and vice
versa.

The local gravitational force, gF mg = , the

universal gravitational force,

( )rF ˆ−=
2

21
G r

mm
G , and the electrostatic

force rF ˆ
2

0

21
E r4

qq

πε
=  are all examples of

conservative forces. This statement can be

verified by calculating either 0=×∇ F  or

0dc =•= ∫ sF: .

To reiterate, the work done by a

conservative force is independent of the

path taken, and is determined entirely by the

coordinates of the initial and final locations.

Or, (equivalently!) a conservative force is

irrotational, has zero curl.

Can we ever directly calculate the work in a

very general way for a force? The answer is

yes, if the force is the total or net force

acting on a particle. That is, if the force is

that appearing in Newton's Second Law of

Motion, 
dt
d

N

p
F = , where p is the

momentum of the particle. Momentum is the

product of the particle's mass and its

velocity: vp m= .
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Path S

A

B

x

y

z

pA

pB

FN

∫ •=
B

A

NN dsF:

pA

pB

pz

py

px

p
dp

m2
p

m2
p

d
m
1 2

B
2
B

N

B

A

−=•= ∫
p

p

pp:

By a transformation of variable from that

describing the path in real space, ds, to that

in momentum space, dp, we can directly

integrate the form for the work done by the

net force. For the integrand,

.
m

d
dt

mdt
d

dt
dt
d

dN

pppp
v

p
sF

•=•=•=•

Then

.
m2

p
m2

p
m2

d
m
1

d

2
A

2
B

A

B
N

NN

B

A

B

A

−=•=

•=•= ∫∫

p
ppp

ppsF
p

p

r

r

:

:

The quantity 2
2
1

2

mv
m2

p
=  is evidently

pretty special, and so it is given a special

name, the kinetic energy . And the

remarkable result we have just obtained is

called the work-energy theorem . Simply

stated, this theorem asserts that, when any

object's momentum is changed (that is,

whenever it is accelerated) the work done by

the net force acting on the object is the

change in the object's kinetic energy.
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FG

A

B

x

y

z

Given a conservative force, then the work

done by the force along a path depends only

on the endpoints of the path.  In such a

circumstance (only if the force is

conservative), a Potential Energy, U, can be

associated with the conservative force,

which by definition is always:

∫ •−=−≡−
B

A

ABAB dUU sF: .  [2]

Exercise:  Use this definition to show that

the potential energy gained by moving a

particle of mass m from a point

( )AAA zyx A ,,  to point ( )BBB zyx B ,,  in

the presence of the local gravitational force

( )kF ˆ−= mgg  is given by

( )ABAB zzmgUU −=− .

For the electrostatic force, we define the

electrostatic field E by, EF 0E q= , where

q0 is the test charge that experiences the

force. Putting this into the expression for the

work ([2]), we have

.∫∫ •−=•−=−≡−
B

A

0

B

A

0ABAB dqdqUU sEsE:
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∫ •−=−
B

A

AB dVV sE

A

B

E

x

y

z

Note that, by dividing both sides of this

equation by the test charge q0, we have an

equation for the potential energy per unit

charge in the electric field between the

points A and B. This quantity is called the

electrostatic potential difference, or simply

the potential between the points. We use the

symbol V to represent the potential.

∫ •−=−≡
− B

A
AB

0

AB dVV
q

UU
sE .

We have used the precisely defined

scientific terms for this quantity, and

carefully defined it mathematically. But you

should understand that this is exactly what is

meant by the everyday term "the voltage

between points A and B". You can see from

the definition that the potential has units of

the electric field times a length. The SI unit

for the potential is the Volt, so

Coulomb
meterNewton

C
mN

Volt 111 ⋅⋅ == . It is common to

state the units of the electric field as m
Volt .

Next we explore the consequences of the

definition of the potential as a path integral.
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∫ •−=−
B

A
AB dVV sE

A

B

E

x

y

z

PE

q

r

The first thing to note from the definition

∫ •−=−
B

A
AB dVV sE  is that the point A

and the value of the potential at that point,

AV , are arbitrary. One is free to choose the

point where the potential has the value zero,

because only differences in the potential

have physical consequence. The general

rule is to pick a convenient reference point

A, usually designating 0V =  at the

reference point. Then the potential at any

other point depends on the electric field all

along the path from the reference point.

For distributions of charge, it is usually most

convenient to choose the reference point to

be infinitely removed from the distribution.

We can see why by calculating the potential

in the neighborhood of an isolated point

charge using infinity as the reference point.

We choose an observation point P at some

distance r away from the charge q. Then we

choose a reference point infinitely removed

from the charge: 0V =∞ .
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PE

q

r

( ) ∫
∞

•−==
r

P drVV sE

PE

q

r

( )
r
q

rV
Κ=

Now we calculate the potential at the

observation point P from the definition.

∫
∞

∞ •−==−
r

PP dVVV sE .

Making things easy for ourselves, we

choose a radial path inward from the

reference point at infinity. In other words, we

choose the path element us ˆdud = , using

u as a radial variable of integration. Then

the integral becomes

( ) ∫
∞

•Κ−==
r

2P du
u

q
rVV uu ˆˆ , where we

have inserted the Coulomb Law form for the

electric field of the point charge.

The integration has become simple, with the

result:

( )

( ) .
r
q

rV

r
qr

u
1

q
u
du

qrV
r

2

Κ=

Κ=
∞



 −Κ−=Κ−= ∫

∞

Here one can see why the choice of a

reference point of zero potential at infinity is

"convenient". That is the choice that results

in the simplest possible form for the potential

of the isolated point charge.
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Pr

qn rn

origin

( ) ∑
=

Κ=
N

1n n

n

r
q

rV

dq

P

origin

rPr

( ) ∫Κ=

ondistributi
charge

P r
dq

rV

The result for the potential of an isolated

charge provides a way of calculating the

potential of a charge distribution when we do

not know the electric field associated with it.

Because electric fields can be linearly

superposed, so can the potentials defined

by a path integration of the fields. We can

simply add up the contributions.

For a charge distribution consisting of N

discrete point charges N1 q ..., q ,  at

distances N1 r ..., r , , respectively, from the

observation point: ( ) ∑
=

Κ=
N

1n n

n

r
q

rV .

For a finite extended charged object, the

potential at the observation point P is given

by the superposition of the potentials of all

charge elements in the charge distribution:

( ) ∫Κ=

ondistributi
charge

P r
dq

rV .



Cartoon Boards Narrative

24

( ) ∑
=

Κ=
N

1n
n2

n

n

r

q
r rE ˆ

Pr

qn rn

origin

E(r)

( )

( )

V

EEEV

z
V

y
V

x
V

V

E
z
V

  , E
y
V

  , E
x
V

dzEdyEdxEVV

dVzyxV

zyx

zyx

P

R
zyxR

P

R
R

−∇=

−−−=∇

∂
∂+

∂
∂+

∂
∂=∇

−=
∂
∂−=

∂
∂−=

∂
∂

++−=−

•−=−

∫

∫

E

kji

kji

sE

ˆˆˆ

ˆˆˆ

,,

Note that these superposition expressions

are similar to the Coulomb Law expressions

for the electric field: ( ) ∑
=

Κ=
N

1n
n2

n

n

r
q

r rE ˆ  and

( ) ∫Κ=

ondistributi
charge

2P r
dq

r
r

E
ˆ

, respectively.

Usually, the calculation of the potential for a

charge distribution is easier than calculating

the electric field by the Coulomb Law,

primarily because the potential is a scalar

quantity, rather than a vector.

Can we determine the electric field if the

potential is known? The answer is "yes", and

it is easily done.

Writing the element of the path as

kjis ˆˆˆ dzdydxd ++= , we can expand the

dot product under the integral, and see that

the partial derivatives of the potential are the

negative of the components of the electric

field. (Remember that the value of the

reference potential VR is a constant, usually

zero.) That relationship can be compactly

expressed using the Del operator as

V−∇=E . The expression V∇  is called

the gradient of the potential V.
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E

r

a

Q

In most cases, the easiest procedure to find

the electric field for a charge distribution is to

first calculate the potential, then take its

gradient to get the electric field.

Finally, we note a couple of properties that

the potential has by virtue of its definition as

a path integral: 1) The potential must be

continuous, and 2) the potential will

generally have non-zero value even in

regions of space for which the electric field

is zero.

To illustrate these properties by an example,

consider a charged conducting sphere of

radius a. The entire charge Q of this object

lies on the surface of the sphere, in the form

of a constant surface charge density

20 a4
Q
π

=σ . The electric field (perhaps

calculated using the Gauss Law) is given by







<

≥Κ
=

ar , 0

ar , 
r
Q
2

rE
ˆ

. The electric field arises

from the surface charge, and is zero inside

the surface of the sphere.
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( )
r
q

arV
Κ=≥E

r

a

Q

r

a

E

( )
a
Q

aV
Κ=

E = 0

( )arV <

ar =
r

E(r) or V(r)

0E =

2r
Q

E
Κ=

r
Q

V
Κ=

a
Q

V
Κ=

In the region outside the charged sphere

( )ar ≥ , the calculation for the potential is

the same as was done above for the point

charge, yielding ( )
r
Q

arV
Κ=≥ . In

particular, the value of the potential at the

surface ( )ar =  arises from all of the electric

field encountered in the path from the

reference point at infinity, and has the value

( )
a
Q

aV
Κ= .

The potential inside the sphere ( )arV <

also depends on all the electric field

encountered on the path from the reference

point, even though the electric field in this

region is zero.

Specifically,

( )

( ) ( ) ( )

( ) ( ) ( ).aVd0aVarV

dardararV

darV

r

a

r

a

a

r

=•−=<

•<−•≥−=<

•−=<

∫

∫∫

∫

∞

∞

s

sEsE

sE

Inside the sphere, where the electric field is

zero, the potential remains constant at the

value obtained at the surface of the sphere.
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Instructor's Guide

This project is most appropriate for students who have completed at least two semesters of
calculus study and are currently enrolled in the second semester of the introductory physics
series on electricity and magnetism. However, it could also be useful for rather advanced
students taking the first physics course on mechanics, or as "background repair" for struggling
students in a junior-level electrodynamics course.

Ideally, the project would be a joint effort by a team of two students, their physics instructor, and a
mathematics instructor with experience in teaching calculus. (A single student could also
undertake the project, but the advantages of peer teaching would be lost.) The project begins with
a kickoff meeting of all participants, in which the students receive a copy of the storyboard and
the activities, and the instructors review the storyboard in some detail. This review should stress
the unity of concepts connecting work, conservative forces and the electrostatic potential. The
students leave the first meeting with the task of beginning work together on the problem set, and
with a scheduled next meeting with one or both of the instructors. A time limit for completion of
the project should be set at the first meeting, and should be short enough to require rather
intensive effort by the students. A time limit of two weeks appears appropriate for average
students, although exceptional ones might be prepared to complete it in as little as one week.

The activities are challenging to all but the most exceptional students, so the students should
frequently meet with one or both instructors during the project for coaching. The coaching
meetings should occur every couple of days, and can be expected to last about one-half hour
each. Some of the coaching will deal with technical details such as techniques of integration and
differentiation. Still, the instructors should repeatedly refer back to the concepts presented in the
storyboard as the basis for solving the problems.

Our first experience with use of this ILAP occurred during the Fall Semester of 1998, with
participation by ten students (of a class of nineteen students) who were taking the introductory
electricity and magnetism course at Clark Atlanta University. The inducement was that their grade
on the ILAP could replace an existing test grade in the course. The participants formed five teams
of two students each. The results were very positive for those students who actively participated,
as discussed below.

Of the five teams, two did not seriously apply themselves to the ILAP, received poor grades for it,
and showed no measurable benefit in subsequent tests given during the semester. The remaining
three teams worked diligently on the activities, used their physics and mathematics instructors
appropriately as coaches, and received good grades on the ILAP. On one team, the two students
participated as equals, while the other two of the three teams had one identifiable leader who
contributed most of the effort, with the other member of the team less active. The six students on
these three teams unanimously expressed the opinion that the storyboard presentation was
useful in learning the material. More importantly, the four students who were fully active
participants all displayed full comprehension of the use of path integrals in subsequent tests given
during the semester, gaining full credit for all questions posed to them involving calculations with
path integrals. This result was a remarkable improvement for all four of these students.

Therefore, we intend to continue use of the ILAP in subsequent semesters.
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Instructor's Solutions to Activities

1. (a) It is instructive to first note that the force is constant, unvarying over any path between the
points A and B, and therefore that both the force and the dot product operation can be taken

outside the integral. ∫∫ •=•=
B

A

g

B

A

gg dd sFsF: . The remaining integral is simply the vector

from the initial point A to the final point B,

( ) ( ) ( )kjiss ˆˆˆ
aBaBaB

B

A

zzyyxxd −+−+−==∫ , which in turn depends only on the

coordinates of the initial and final points. Thus sFsF •=•= ∫ g

B

A

gg d:  is conservative, and

the same argument holds for any constant force. QED.

One can solve this problem very specifically by simply substituting the forms ( )kF ˆ−= mgg

and kjis ˆˆˆ dzdydxd ++=  into the definition of the work and performing the operations, to

wit: ( ) ( )[ ] ( ) ( )AB

z

z

zyx

zyx

B

A

gg zzmgdzmgdzdydxmgd
B

A

BBB

AAA

−−=−=++•−=•= ∫∫∫
,,

,,

ˆˆˆˆ kjiksF: .

Of course, the same answer is generated by either method.

( )[ ] ( ) ( ) ( )[ ] ( )aBaBaBaBgg zzmgzzyyxxmg −−=−+−+−•−=•= kjiksF ˆˆˆˆ: .

(b) The element of path length for the circle given in the problem is

( ) θθ+θ=θ= dRRdd kiès ˆsinˆcosˆ . Substitution into the form for the work yields

( ) ( ) ( 0mgRdmgRdRmgd
0

2
2

0

2

0

gg =θ=θθ−=θθ+θ•−=•= π
ππ

∫∫∫ cossinˆsinˆcosˆ kiksF:

QED.

(c) ( ) ( )[ ] ( ) ( ) ( ) 000mgmgmg yxzyxg =+=−+=−×++=×∇ ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ ijkkjiF ˆˆˆˆˆˆ . QED.

2. (a) Choose a coordinate system in the plane of the circular orbit, with the origin at the center
of the earth. The satellite's orbital path is then a circle of radius r ( ERr > , where ER  is the

radius of the earth), and an element of the path is ös ˆφ= rdd . Then the work done by

gravity in any part of the orbit is ( ) 0rd
r

mm
Gd

B

A

B

A

2
E

GG =φ•−=•= ∫∫
φ

φ

φ

φ

örsF ˆˆ: , because

the dot product is identically zero. ( r̂  and ö̂  are orthogonal unit vectors.) QED. Note that if

the orbit is not perfectly circular but is elliptical, then ds has components along both r̂  and
ö̂ . In this case the work done by gravity in a segment of the orbit may be either positive (the
satellite is approaching the earth) or negative (the satellite is receding from the earth). Still,
the work done for a complete orbit is easily shown to be zero (the angular integration
vanishes because the dot product is zero and the radial integration vanishes because the
lower and upper limits are identical).



29

(b) Note that GF  has the form ( )rF ˆrF rGG = . All the angular components and angular

derivatives are zero: 0FF GG == φθ  and 0
FF rGrG =
φ∂

∂
=

θ∂
∂

. So each one of the six terms in

the spherical coordinates expression for GF×∇  is zero. QED.

3. (a) This is only a slight generalization of 2(a). The dot product eliminates all but the radial
dependence of the closed path integral.

( ) ∫∫∫ πε
=θ+φθ+•

πε
=•

2
0

2
0 r

dr
4

q
rddrdr

r4
q

d èörrsE ˆˆsinˆˆ . Denoting by Ar  the

starting and ending radial distances for the closed path,

0
r

r

r
1

4
q

r
dr

4
q

d
a

a

0

r

r
2

0

A

A

=



πε
−=

πε
=• ∫∫ sE . QED.

(b) This is done exactly as 2(b). Replace GF  with E and GF  with GE  in the answer to 2(b) to

show that 0=×∇ E .

4. The closed path indicated consists of a horizontal line segment plus a semicircular line
segment.

 
( ) ( )

( ) ( ) 02mgRRR2mg

Rdmgdxmgd

kkf

0
k

R

R
kkf

≠π+µ−=π+µ−=

θ•−µ+•−µ=•= ∫∫∫
π

−

:

: èèiisf ˆˆˆˆ
. QED.

Addressing the curl of the frictional force, we separately consider the straight and
semicircular path segments. Straightforwardly applying the definition of the curl, we find for

the straight segment ( ) ( )[ ] 0mgkzyxk =−µ×++=×∇ ∂
∂

∂
∂

∂
∂ ikjif ˆˆˆˆ .* And for the

semicircular segment:

 

( ) ( )[ ]
( ) ( )[ ] ( ) 0

R
mg2

xy
R
mg

mg

k
zyx

k
k

kzyxk

≠−
µ

=−×++
µ

=×∇

θ−θµ×++=×∇

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

kjikjif

jikjif

ˆˆˆˆˆˆ

ˆcosˆsinˆˆˆ

, where we have used

the replacements θ= cosRx  and θ= sinRy .
* The perceptive student may object "If the object returns to the initial point backward along
the same straight line, the path integral remains nonzero, but the curl appears to be zero."
From the physicist's point of view, this can be dismissed by the impossibility of exactly
retracing a mathematical line with a physical object, and any separation of the return path
from the original generates a nonzero curl, that is, a variation in y of the unit vector ( )v̂− .
From the mathematical point of view, the objection might lead to an interesting discussion of
limit theorems and continuity and differentiability of functions. Such a discussion is beyond
the scope of this ILAP.

5. (a) Throughout this solution, the dummy radial variable u is used in the integrand to avoid
confusion with the all-important upper limit of the path integral. The radial path inward from
infinity is used, so that us ˆdud = . Because the path integral must begin at the reference
point at ∞=r , we first address the part of the domain outside the charge distribution
( )a3r >  and use the form of the electric field that applies in this region:
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( ) ( ) ( )
r2

q
u
du

2
q

du
u2

q
da3ua3rV

0

r

2
0

r

2
0

r

πε
−=

πε
=•−

πε
−=•>−=> ∫∫∫

∞∞∞

uusE ˆˆ .

The limit value at the inward extreme of this region is ( )
a6

q
a3V

0πε
−= .

Continuing the path integral into the region for which a3ra2 ≤≤ , we have

( ) ( ) ( )

( ) ( ) ( ).a3Vd0a3Va3ra2V

da3ua2da3uda3ra2V

r

a3

r

a3

a3r

=•−=≤≤

•≤≤−•>−=•−=≤≤

∫

∫∫∫
∞∞

s

sEsEsE

The potential is constant in this region. The inner limit value is ( ) ( )
a6

q
a3Va2V

0πε
−== .

For the remainder of the solution, we take as given the results of previous integrations.
Continuing inward into the region a2ra ≤≤ , we have

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) .

ˆˆ






 −

πε
=





 −

πε
+

πε
−=≤≤





πε
+=

πε
−=≤≤

•
πε

−=•≤≤−=≤≤

∫

∫∫

a6
7

r
1

4
q

a2
1

r
1

4
q

a6
q

a2raV

a2

r

u
1

4
q

a2V
u
du

4
q

a2Va2raV

du
u4

q
a2Vda2raa2Va2raV

000

0

r

a2
2

0

r

a2
2

0

r

a2

uusE

The inward limit value in this region is ( )
a24

q
aV

0πε
−= .

Finally, in the region ar < , we have

( ) ( ) ( ) ( ) ( )aVdu0aVdaraVarV
r

a

r

a

=•−=•<−=< ∫∫ usE ˆ . As in the other region for

which the electric field is zero, the potential remains constant at its value on the boundary

throughout the region. The inward limit value is ( ) ( )
a24

q
aV0V

0πε
−== .

(b) In plotting the electric field and the potential, we display the electric field as a heavy blue

curve and the potential as a heavy red curve. The electric field is plotted in units of 
2

0a4
q

πε
,

and the potential in units of 
a4

q

0πε
. These units arise naturally in terms of known quantities

in the solution. This type of simultaneous graphing can provide the student with a deeper
understanding of the relationship between the electric field and the potential. The electric field
has discontinuities at the charged surfaces of the conductors. The potential must be
continuous, but exhibits discontinuities in slope at the charged surfaces. The electric field is
everywhere equal to the negative slope of the potential, in accordance with the relationship

V−∇=E .
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r

E(r), in units of ( )2
0a4q πε

V(r), in units of ( )a4q 0πε

-1

1

0
3a2aa

1/4

-2/9

-2/3

-1/6

6.  (a) As in Activity 5, the dummy radial variable u is used in all integrands, to avoid confusion
with the upper limit of the path integral. Within the outer conductor crb <<  the electric field
is zero, and the potential remains constant at the zero value of the reference point at cr = .

( ) ( ) 0du0dcubcrbV
r

c

r

c

=•−=•<<−=<< ∫∫ usE ˆ . The inner limit value in this region

is ( ) 0bV = . Between the conductors bra ≤≤  and the potential is given by

( ) ( ) ( ) .lnˆˆ 






πε
λ=

πε
λ−=•

πε
λ−=•≤≤−=≤≤ ∫∫∫ r

b
2u

du
2

du
u2

dbrabVbraV
0

r

b0

r

b 0

r

b

uusE

The inner limit value in this region is ( ) 






πε
λ=

a
b

2
aV

0

ln . Within the inner conductor ar <

the electric field is again zero, and the potential remains constant at the value ( )aV .

( ) ( ) ( ) ( ) ( ) 






πε
λ==•−=•<−=< ∫∫ a

b
2

aVdu0aVdaraVarV
0

r

a

r

a

lnûsE . The inner

limit value in this region is ( ) ( ) 






πε
λ==

a
b

2
aV0V

0

ln .

(b) The graph is similar to that for Activity 5. In this graph the electric field is plotted in units of

a2 0πε
λ

, and the potential in units of 
02πε

λ
. The curves as drawn correspond to 2

a
b ≈ .
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r

E(r), in units of ( )a2 0πελ

V(r), in units of ( )02πελ

1

0
cba

a/b

ln(b/a)

7.  (a) The distances from each charge to the observation point can be found in a number of
ways, by vector analysis, geometrical construction of right triangles, or by use of the law of
cosines. Using vector analysis here, the vector from the positive charge to the observation

point is ( )kur ˆˆ azu −+=+  and its length is

( ) ( )[ ] ( )[ ]
( ) .cos

cossin
/

///

2122

21222212221

ar2arr

arrazur

θ−+=

−θ+θ=−+=•=

+

+++ rr

Similarly, ( )[ ] ( ) 21222122 ar2arazur
//

cos θ++=++=− . Substitution of these distances
into the form for the potential gives the desired result

( ) ( ) ( )[ ].coscos,
// 21222122

2

1n n

n ar2arar2arq
r
q

r
q

r
q

rV
−−

−+=
θ++−θ−+Κ=







 −+Κ=Κ=θ ∑
QED.

(b) Each term in the potential vanishes in the limit of infinite distance of the observation point.

( ) 0ar2ar
2122

r
=θ±+

−

∞→

/lim cos , so 0rV
r

=θ 



 




∞→
,lim . QED.

(c) Substituting ( )θ−π→θ  in the form for the potential yields

( ) { }( ) { }( )[ ]
( ) ( ) ( )[ ] ( ).,coscos,

coscos,
//

//

θ−=θ−+−θ++Κ=θ−π

θ−π++−θ−π−+Κ=θ−π
−−

−−

rVar2arar2arqrV

ar2arar2arqrV
21222122

21222122

QED. Note use of the trigonometric identity ( ) θ−=θ−π coscos .

(d) Given the form for the gradient in spherical coordinates and

( ) ( ) 







φ∂

∂
θ

+
θ∂

∂+
∂
∂−=θ−∇=θ öèrE ˆ

sin
ˆˆ,,

V
r

1V
r
1

r
V

rVr , we first note that the potential is

independent of the angle φ  (reflecting the cylindrical symmetry of the potential about the z-

axis), so that the third term in the gradient vanishes. That is, 0E =φ , the electric field also
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has cylindrical symmetry about the z-axis. Writing ( ) èrE ˆˆ, θ+=θ EEr r , we calculate each

component separately.

( ) ( )[ ]
( )( )

( )
( )( )

( )
( )

( )
( )

( ) .
cos

cos

cos

cos

cos

cos

cos

cos

coscos

//

//

//













θ++

θ+−
θ−+

θ−Κ=













θ++

θ+−
−

θ−+

θ−−
Κ−=
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∂
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∂
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−−

23222322r

2322

2
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2
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r
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r
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ar2ar
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qE

ar2ar

a2r2
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a2r2
qE

ar2arar2ar
r

q
r
V

E

Comparison reveals agreement with the radial component stated in Activity 7(d). For the
azimuthal component:

( ) ( )[ ]
( )( )

( )
( )( )

( )

( ) ( ) .
coscos

sin

cos

sin

cos

sin

coscos

//

//

//













θ++
+

θ−+
θΚ=













θ++

θ−−
−

θ−+

θ−Κ−=

θ++−θ−+
θ∂
∂Κ−=

θ∂
∂







−=

θ

θ

−−
θ

23222322

2322

2
1

2322

2
1

21222122

ar2ar

1

ar2ar

1
qaE

ar2ar

ar2
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ar2

r
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E

ar2arar2ar
r

qV
r
1

E

Again, comparison reveals agreement with the azimuthal component stated in Activity 7(d).

(e) Note that rE  is a difference of two terms, and θE  is a sum of two terms. For each of the

components, the transformation of θ−π→θ  exchanges the identities of the terms. This

leaves the sum in θE  unchanged, but reverses the sign of the difference in rE . Thus if

( ) èrE ˆˆ, θ+=θ EEr r , then ( ) èrE ˆˆ, θ+−=θ−π EEr r . In the midplane

( ) ( ) ( )[ ] 0ararqrV
21222122

2 =+−+Κ=
−−π .,

//
 and the potential in this plane has no

variation with radial distance. However, the gradient of the potential is perpendicular to the
midplane, and so is the electric field. Note that

( ) ( ) ( ) 0
ar

r

ar

r
qrE

232223222r =












+
−

+
Κ=π

//, , while ( ) 2322 ar

qa2
E

/
+

Κ=θ . Because at

2
π=θ , kè ˆˆ −= , and ( ) ( ) ( )kEE ˆ

/
−

+
Κ==

2322midplane
ar

qa2
r . This result decreases

monotonically with distance from the origin. The maximum value is ( ) ( )kE ˆ−Κ=
2a
q2

0 .

(f) The path element for the path described is ñs ˆρ= dd  (here using ρ  as the dummy radial
variable in the integrand), and the equation for the potential in terms of the electric field is
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( ) ( )

( ) ( )
( )

( )
( )

( ) ( ) ( ){
( ) ( ) ( )[ ].coscos,

coscos,

cos

cos

cos

cos
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ˆˆˆ,
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21222122

21222122

r

23222322
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a
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ρ
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ρ
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

θρ++ρ

θ+ρ
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θρ−+ρ

θ−ρ
Κ−=θ

ρ−=ρ•+−=•−=θ

∫

∫∫∫ ñèñsE

QED.

(g) Taking limits by substitution in the forms for the potential and the electric field for the
dipole simply yields the uninteresting result of zero. We look for forms describing the
approximate behavior of the functions when ar >> . Note that the operation described by

ar>>
lim is equivalent to ( ) 0ra →

lim
. This suggests factoring r from the denominators, which is legal

because we are certainly far from 0r = , and which makes explicit the role of the small

quantity ( )ra . We can then use the binomial approximation to expand the radicals.
Following this plan, we write

( ) ( ) ( )[ ]
( ) .coscos,~

coscos,
//

limlim

//



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



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

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
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
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The terms in ( )2ra  can be neglected in comparison to those in ( )ra , and the binomial

approximation applied to take the limit, using ( ) θ






±=δ cos

r
a

2  and 2
1n −= . (The minus

sign in δ  is used for the first term, the plus sign in the second term.) This procedure yields
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Applying the same procedure to each component of the electric field, we find
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~

. Here we can neglect

the second term in each numerator with respect to the first, and again neglect the squared
terms in the denominators. Using the binomial approximation, we have
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
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
 θ+Κ= cos

coscos~
 for the radial component. For

the azimuthal component
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Then the vector electric field is ( )èrèrE ˆsinˆcosˆ~ˆ~~ θ+θΚ=+= θ 3
r
qa2

EE
3r .

As prompted by the activity, we calculate ( ) Eèr
~ˆsinˆcos~ ≠θ+θΚ=∇− 2

r
qa2

V
3

. This

means we should be careful not to assume that the approximate forms we found by taking
the limits have all the properties of the exact functions. We see that they do not. We are
assured that, for the exact expressions, V−∇=E . However, the approximate forms need
not satisfy this nice relationship – they are, after all, only approximations. With this caution in

mind, would one expect that ∫
∞

•−=
r

dV sE
~~

?
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